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Golden Section’s 
synonyms

•Golden section
•Golden ratio
•Golden proportion
• Sectio aurea (Latin)
•Divine proportion
•Divine section
•Phi



Self-Similarity

• Self-Similarity is the over-arching principle within which Golden 
Section proportion belongs.
• Self-similarity involves inter-semiotic translation, whereby certain 

features or patterns recur across multiple scales or parameters 
creating a web of inter-relationships. The presence of self-similarity 
may be indicated by the presence of the following:  



Indicators of Self-Similarity

• Scaling
Truly self-similar relationships and patterns require that scaling is present 
without appreciable change (Madden 1). Scaling is change of size 
accompanied by constancy of shape or form, and is the principal criterion 
of self-similarity (Mandelbrot 37). 
• Recursion

Recursion involves iteration of a given object, rule or idea in a self-
referential manner. Recursive patterns of numbers potentially expand 
infinitely, often from the simplest of generating rules. 
• Geometric sequence

We may observe scaling and recursion manifested as geometric (rather 
than arithmetic) sequences. 



Recursion

An example of a recursive pattern is a summation series, whereby each 
successive term is created by adding together previous terms.

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, ...
Each term is calculated by adding up the two before it.
2 is found by adding the two prior numbers (1+1)
3 is found by adding the two prior numbers (1+2)
Etc…
This creates a geometric progression.



Fibonacci Series
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, ...
• This particular summation series is known as the Fibonacci series, named 

after the thirteenth century Italian mathematician Leonardo of Pisa. 
("Fibonacci" was his nickname.)
• This series expands not only infinitely, but also exponentially. The presence 

of scaling in this regard indicates the repeated application of a particular 
ratio. The fractional results of the ratios between each successive term in 
the Fibonacci series are listed below.

1/1 =1
1/2 =0.5
2/3 = 0.666
3/5 = 0.6
5/8 = 0.625
8/13 = 0.615



Fibonacci Series and Golden Section

• There is an intrinsic connection between the Fibonacci Series and 
Golden Section proportion.
• The Fibonacci Series tends towards GS proportion as one evaluates 

the ratio between successive members of the series.
• 144/233 or 0.618 is commonly taken as a reasonably close 

approximation of what is actually an irrational number.
• Curiously, any summation series will converge on GS regardless of 

value of the two the initial terms, if the same generating rule is 
applied.



Fibonacci Series and GS in Overtones
In musical harmony, and the development of temperament (tuning 
systems), we discovered early on that it was pleasurable to listen to 
strings tuned in relations of small integers – i.e. using the numbers 1, 2, 
3, 4...
The following lists ratios and their interval equivalents: 
• 1:1 unison 
• 2:1 octave (diapason) 
• 3:2 perfect fifth (diapente)
• 4:3 perfect fourth (diatessaron)
• 5:4 major third (ditone) 
The perfect fifth is 2/3 = 0.666... which approximates GS. It is the next 
most consonant interval after the unison and octave, and is such a 
common place to modulate.



Fibonacci Series in Pitch and the Keyboard
• On the piano keyboard there are two groups of black notes – a group 

of 2 and a group of 3, totalling 5.
• In one octave, C to C, we have 8 white notes, giving the grand total of 

13 notes.
• 2, 3, 5, 8, and 13 are all from the Fibonacci series. 



Fibonacci Series and Melodic Application
Schillinger proposes various applications of the summation series to pitch, using the values 
to represent intervals measured in semitones:
• Alternation of direction of interval (340) 
• Readjustment of range, via octave transposition (334) 
• Progressive substitution of the initial terms of the Fibonacci series by replacing 
the second term with the third (e.g. 1, 3, 4, 7, ... and 1, 4, 5, 9, ...) (334) 
• Redefining the generating rule of the series (e.g. every term is the summation of the 

prior three) (335) 
• Tabulation of summation series against term number on two axes that could be applied 

isomorphically to duration and pitch (335)
• Tabulation of summation series against term number on two axes with alternation of 

direction of interval to create spiral formations with bilateral symmetry (337) 
• Interpolation of the original term as the pitch axes, applied to the prior symmetrical 

approach (339) 
• Compression of the range of the series through omission of the third term, and use of 

balancing interval directions such as terms 1 and 2 ascend, followed by term 4 descends 
(340, 347). 



Fibonacci Series and Pitch

Tabulation of summation series against term number on two axes that could be applied 
isomorphically to duration and pitch (per Schillinger 333) 



Fibonacci Series and Pitch

Tabulation of summation series against term number on two axes with 
alternation of direction of interval (per Schillinger 337) 



Fibonacci Series and Pitch

Spiral melody as isomorphic interpretation of summation series.



Fibonacci Series and Scales

• Bartok favoured the use of the octatonic and pentatonic scales.
• The octatonic scale has a 2+1 interval generator, thus forming 

intervals of 1, 2, 3, 5, 8, 13 etc.
• The pentatonic scale also contains Fibonacci numbers:

E G A C D
3 2       3 2

5 5 
8



Fibonacci Series and 
the Major-Minor Chord

• Bartok favoured the use of a 4-note chord 
with both major and minor 3rds. Its 
intervallic construction
• The chord illustrated is in D
• It is constructed (in ascending order) with

3, 5, 3, with 8’s spanning the outside to 
inner pitches

G
''''
!
E



Fibonacci Series and Acoustic Scale

• Bartok’s use of the lydian dominant scale can be explained in many 
ways.
• It has a relationship to the harmonic series (the first 11 partials).
• It is also the complement of the chromatic aggregate once the 

Fibonacci series notes (number 1, 3, 5 etc) are removed.
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